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Abstract: Detecting unauthorized users can be problematic for techniques that are available at present if the nefarious 

actors are using identity hiding tools such as anonymising proxies or Virtual Private Networks (VPNs). This work 

presents computational models to address the limitations currently experienced in detecting VPN traffic. A model to 

detect usage of virtual private networks (VPNs) was developed with  a Multi layered perceptron neural network that was 

trained using flow statistics data found in the Transmission Control Protocol (TCP) header of captured network packets. 

Validation testing showed that the presented models are capable of classifying network traffic in a binary manner as 

direct (originating directly from a user’s own device) or indirect (makes use of identity and location hiding features of 

VPNs) with high degrees of accuracy.   

 

1.  Introduction 
 

Virtual Private Networks (VPNs) are a common method for 

criminals and other bad actors to disguise their online 

activities [1,2]. This is helped along by the increase in ease of 

use of VPNs; they are no longer just a tool for remotely 

accessing enterprise resources when travelling for work or 

when working from home. In fact, this could be a use-case for 

a criminal. If they wish to remotely access an enterprise 

network in order to steal company and trade secrets, they can 

use a VPN to hide their own location or to make it appear as 

if someone else was infiltrating the network [3]. There have 

been a few notable cases of this happening in recent years, 

such as the Sony Pictures incident from 2014, where 

confidential data including personal information about 

employees was stolen [4, 5]. Other attacks of note are the 

various data breaches which have been occurring for the last 

number of years, such as the LinkedIn breach [6]. 

Approximately 167 million account details including emails 

and passwords were stolen. It is not known whether the 

attacker(s) were using a VPN service to hide their location.  

 

There are many anonymity technologies with most being 

based on networks called “mix” networks. These ‘Mix 

networks’ route packets in such a way as to make it extremely 

difficult a link between the source of the request. This works 

via through intermediaries and ‘mixing’ packets from 

participant. This makes it very difficult for eavesdroppers to 

trace end-to-end communications [7, 8]. Low latency systems 

include the popular anonymous communication system Tor 

as well as  HTTP/SOCKS proxy services and Virtual Private 

Networks (VPNs) [9]. Systems such as Tor fall under the 

category of multi-hop anonymous communications models, 

while HTTP/SOCKS proxies and VPNs generally fall under 

the category of single-hop anonymous communication 

models. Proxy servers that are used to provide anonymisation 

are based on another type of proxy known as an “open” proxy. 

Open proxies are a proxy that is available to any user on the 

Internet. They are mostly used to set up anonymous proxy 

websites and categorised as a single-hop anonymous 

communication model. There are several different 

implementations of VPNs for providing anonymous 

communications [10, 11, 12]. The intended use for VPN 

implementations was to allow an organisation’s workers to 

securely access internal network resources from outside of 

the internal network i.e. remote access. This is achieved 

through setting up a connection called a tunnel between the 

user’s PC and the organisations servers. VPNs however can 

also be used as an anonymous communication system in an 

equivalent manner to an anonymous proxy server. The main 

difference between the two methods is in the VPN’s tunnelled 

connection. The tunnelled connection between the user and 

the VPN server is encrypted. 

 

IP blocking is a basic technique used to combat malicious 

threats to networks and it is one of the most common 

techniques for protecting networks [13]. Using this method, 

an IP address or a range of IP addresses can be blocked from 

accessing resources located on a web server or on an 

organisation’s internal network. The IP block can be rendered 

ineffective by using proxies or VPNs. The user’s IP address 

is typically sent out as a source IP address in the network 

packet containing the request to a web server. However, when 

using a proxy or VPN, this request is first sent to the proxy 

server which then forwards it on towards the web server. So, 

the blocked IP address of the user is not actually making any 

direct contact with the web server running the IP filter. The 

offending proxy or VPN IP address can be blocked, but this 

act of blocking the IP address can be made redundant. Upon 

discovering that their preferred proxy IP has been blocked, 

the user can simply switch to a different proxy or VPN 

provider. Unless preventative action is taken, which will cost 

a significant amount of time and effort, the user can continue 

to switch in order to maintain their access.  Another method 

of securing networks is the use of Access Control Lists 

(ACL). These are usually implemented alongside IP blocking 

techniques. Network traffic is matched with an ACL to 

discriminate which network packets are forwarded onwards. 

Each packet is examined and compared to the policies 

outlined in the ACL to determine whether it should be 

allowed or blocked [14]. This is a very rigid form of network 

security that relies on a lengthy setup. Specifying what is 

acceptable and what is not takes a large amount of time due 

to the complexity and sheer number of network protocols that 

exist. Filtering based on the protocols included in the network 

packets can be rendered ineffective by VPNs due to how they 

encapsulate protocols within other protocols. Depending on 

the exact implementation of ACL, the network topology for 

the entire enterprise network will not be defined so the ACL 

cannot determine what is a member of the network. Proxies 
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can easily take advantage of this and the ACL is also 

susceptible to the user switching proxy provider to 

circumvent any blocks. Software based packet inspection is 

another method that can be used to detect and block usage of 

a proxy or a VPN. Deep Packet Inspection (DPI) is a popular 

method for securing networks against network packets 

containing malicious items such as viruses and other malware 

that are contained within payloads [15]. DPI examines and 

manages network traffic as it enters the network in a form of 

packet filtering that identifies, classifies and blocks packets 

that contain data (such as the aforementioned viruses) within 

their payload that goes against pre-arranged policies. This 

examination occurs at checkpoints located around the 

network and decisions based on rules assigned by an 

organisation occur in real-time based on the contents of the 

packet’s payload. Previously, packet scanning software had 

the limitation of only scanning the packet’s header, which 

contains the information necessary for transmission, but does 

not contain anything related to its contents. By scanning the 

packets contents, messages and other information can be 

extracted and used to identify the specific application or 

service it comes from. The rules that DPI algorithms operate 

by were string based, however using regular expression 

matching improves content scanning speeds [16]. As 

powerful as DPI can be, it is defeated by packets that make 

use of encryption to conceal their contents. VPNs are 

particularly effective at bypassing DPI as well as some 

proxies which support HTTPS, bringing the effectiveness of 

DPI into question [17, 18, 19, 20]. Over the past decade the 

research and networking communities have investigated and 

developed several classification approaches based on 

multiple algorithms. This has come about because the 

traditional approach of using TCP and UDP network ports to 

classify Internet applications has become less accurate. 

Newer applications that are being developed do not have 

ports registered to them by IANA and instead make use of 

ports that are already registered to other applications. The 

exhaustion of IP version 4 addresses has also contributed to 

this as organisations and application developers move to 

mitigate the effect [18].   Classification algorithms typically 

require training based on previously labelled data. For 

classification of network traffic, the network packets form the 

basis of the dataset. The contents can consist of unedited 

packet headers, with the information contained being used as 

the training features. They can also consist of statistical 

information calculated from streams of packets called flows. 

Efforts to classify Internet applications have largely been 

successful, with several datasets being created to represent 

most of the applications available. However, datasets 

representing anonymous communication systems are mostly 

non-existent and research into classification of anonymous 

traffic is still an emerging research area. A major limitation 

into classification of this type of network traffic is the use of 

encryption, which renders the payload of packets unusable as 

a training feature. Using machine learning capabilities and 

different feature formats, it should be possible to overcome 

this limitation. Packet header information such as the 

sequence and acknowledgement numbers and the general size 

of the data can potentially be used to train a machine learning 

algorithm. There is also the option of using flow-based 

features to enhance the potential training and detection 

accuracy of an algorithm [21]. 

 

The ability to detect whether a VPN has been used or not 

could be helpful in the pursuit of attackers such as those just 

mentioned.  This research therefore presents methods that 

would aid in the detection of VPN technologies that are being 

used to hide an attacker’s identity. While VPNs have 

legitimate uses, such as connecting to a business network 

from a remote location, they are still abused by criminals who 

use them to commit crimes whilst remaining undetected and 

unidentified.  We demonstrate the detection and classification 

of VPN traffic using a Multi-layered Perceptron Neural 

Network for the classification of the traffic. Our approach can 

accurately identify threats in real time with as few false 

positive and negative results as possible. 

 

 
2. Virtual Private Networks (VPNs) 
 

A Virtual Private Network (VPN) provides private networks 

of resources and information over any public network [21, 

22]. It enables a remote machine on network X to tunnel 

traffic, that might not normally be able to be sent across the 

Internet, to a gateway machine on network Y and appear to 

be sitting, with an internal IP address, on network Y. The 

gateway machine receives traffic to this internal IP address, 

and sends it back to the remote machine on network X [23]. 

This itself does not provide much security. Intercepting these 

tunnelled packets would still allow for the contents of the 

private packets to be intercepted and exposed by a third party. 

To overcome this, the private packets need to be encrypted 

and above that, some form of authentication needs to be used. 

VPN protocols vary in their support for encryption and 

authentication schemes. Each of the following sections will 

discuss some example algorithms and schemes supported by 

each VPN protocol. 

 
2.1 PPTP  
The Point-to-Point Tunnelling Protocol (PPTP) is a link layer 

VPN protocol that is designed to tunnel Point-to-Point 

Protocol (PPP) connections through an IP network, creating 

a VPN connection [10, 23]. The final packets are sent over IP 

from the client to the gateway PPTP server and back again. 

PPTP does not provide any methods for keeping data 

confidential or for providing strong authentication. The 

Microsoft implementation that was included with Windows 

NT provides a framework for negotiating authentication and 

encryption algorithms between server and client which relies 

upon existing negotiations contained within extensions and 

enhancements of PPP [25]. Some example authentication 

algorithms are the Password Authentication Protocol (PAP), 

the Challenge-Handshake Authentication Protocol (CHAP), 

MS-CHAPv1/v2, Microsoft’s implementations of CHAP, 

and Extensible Authentication Protocol (EAP). CHAP and 

MS-CHAPv1/v2 have faced extensive scrutiny over the years 

[22, 23, 26, 27]. PAP transmits the username and password 

from the client through an unencrypted channel which leaves 

it vulnerable to eavesdropping attacks. This leaves it in the 

position where it can only be used as a last resort. Due to the 

vulnerabilities that have been found in the authentication and 
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encryption algorithms it uses, PPTP does not see widespread 

use anymore. 

 
2.2 L2TP  
The Layer 2 Tunnelling Protocol (L2TP) is also a link layer 

VPN that extends the PPP model by combining features of 

PPTP with features of the Layer 2 Forwarding (L2F) protocol 

[28]. L2TP functions similarly to PPTP. Higher level 

protocols, commonly PPP connections, are encapsulated 

within an L2TP tunnel by setting up an L2TP session. The 

L2TP packets in turn, including both the payload and the 

L2TP header are transported within a UDP packet. L2TP is 

also similar to PPTP in that it does not provide any methods 

for confidentiality or authentication and instead inherits 

existing protections from PPP. A protocol suite called IPsec 

was introduced to provide improved authentication and 

confidentiality over the PPP methods [12]. The original PPP 

methods used by L2TP were found to be vulnerable to a 

Denial of Service (Dos) attack which involved transmitting a 

request to stop the connection using the correct identification 

in order to terminate the VPN session [20]. This was a 

vulnerability that was solved in an updated version of L2TP 

called L2TP version 3 (L2TPv3). The new version included 

an optional authentication and integrity check that nullified 

the vulnerability. L2TP is often combined with another 

authentication and encryption protocol suite called Internet 

Protocol security (IPSec) [29]. 

 
2.3 IPsec 
IPsec includes a collection of standardised protocols for 

mutual authentication between two hosts at the beginning of 

a VPN session and for the negotiation of cryptographic keys 

used to enable encryption for the session [29]. Data is kept 

secure by authenticating network packets to make sure of the 

integrity of the packet and that encapsulation has been 

implemented correctly. There are two modes in which IPsec 

can provide this functionality: transport mode and tunnel 

mode. In transport mode, the original packet is edited to 

include a new IPsec header in the original IP header. This 

additional header contains the information needed to perform 

authentication and integrity checking. In comparison, tunnel 

mode provides more flexibility. In tunnel mode, the entirety 

of each original IP packet is encapsulated inside a new IP 

packet consisting of a new IP header and the IPsec header 

[29]. This adds a layer of abstraction from the original IP 

packet’s contents therefore providing confidentiality for the 

payload. To determine which mode is to be used during a 

connection, security information defining the modes that each 

end point supports needs to be exchanged. This is referred to 

as a security association. It contains information on the mode 

of IPsec to be used, the encryption algorithms to be used and 

the encryption keys used to set up the encryption. Exchange 

of this information is completed using the Internet Key 

Exchange (IKE) protocol. 

 
2.4 OpenVPN 
OpenVPN1 [30] has a simple configuration and the mixture 

of enterprise-level security, usability and other features, plus 

 
1 https://openvpn.net/ 

its support for most of the operating systems that are 

available, it is widely regarded as among the best VPN 

solutions [31]. OpenVPN makes use of Hash-based message 

authentication codes (HMAC) in combination with the SHA1 

hashing algorithm for ensuring packet integrity. OpenVPN 

has two authentication modes. In mode one, a pre-shared 

static key is used to provide authentication and encryption. In 

mode two, SSL/TLS mechanisms are used for authentication 

and key exchange2 [31]. In static key mode, a pre-shared key 

is shared between both hosts before the tunnel is set up. This 

static key contains four independent sub-keys: HMAC send, 

HMAC receive, encrypt and decrypt. The preferred mode of 

operation is mode two which uses SSL/TLS. In this mode an 

SSL session is established requiring both hosts to present 

their own authentication certificate. If the authentication of 

the hosts succeeds, negotiation and exchange of the 

encryption/decryption and HMAC keys begins. Rather than 

the keys being static as in mode 1, in mode 2 the keys are 

randomly generated either by OpenSSL’s RAND_bytes 

function or by using the TLS pseudorandom function (PRF) 

alongside random source material from both hosts. The keys 

are then exchanged over the SSL/TLS connection and the 

tunnel forwarding process begins. The data to be encrypted 

and transferred in the tunnel includes a 64-bit sequence 

number and the payload data consisting of an IP packet or 

Ethernet frame. Encryption of the tunnel packets is carried 

out using the Blowfish secret key block cipher [32]. 

OpenVPN then multiplexes the SSL/TLS session that is used 

for authentication and key exchange with the encrypted 

tunnel data. SSL/TLS is designed to operate using a reliable 

transport protocol so OpenVPN provides a reliable transport 

layer on top of UDP. The actual IP packets are tunnelled over 

UDP without an added reliability layer after they have been 

authenticated with a HMAC as the IP packet forwarder has 

been designed to operate over an unreliable transport layer. 

 

 
 
3.  VPN classification 
 

A dataset consisting of TCP packets captured using the packet 

analysis tool Wireshark from an OpenVPN connection was 

created and tested using the exact same Azure machine 

learning tools. The results for this showed that the network 

was overfitting the problem as it was achieving 100% 

classification accuracy for both VPN traffic and non-VPN 

traffic. In external validation tests, the network was 

essentially guessing, as it was classifying every sample as 

having come from a VPN. In order to overcome this problem, 

it was hypothesised that a new dataset consisting of TCP flow 

records/statistics would be more appropriate for analysis. 

Flow statistics provide a high-level view of network 

communications by reporting the addresses, ports and byte 

and packet counts contained in those communications [42]. 

This data can be especially valuable when network traffic is 

being encrypted which can be the case with VPN traffic. 

Wireshark formed the basis of the packet capture for this 

newer dataset as was also the case for the first dataset. The 

2 https://openvpn.net/index.php/open-source/documentation/security-
overview.html 
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computer system used to capture the traffic was an Ubuntu 

16.04 based virtual machine running on a Windows 10 host. 

The network connection used in the experiment is a 

virtualised Intel PRO gigabit ethernet card. Linux was used 

as it allows for a finer degree of control over some of the 

internal systems included such as the networking stack. Using 

some built in tools, it is easy to automate connections and 

disconnections to different networks and different network 

interfaces. This was a particularly helpful feature when 

dealing with the capture of VPN based packets. In normal 

operation, a connection to a VPN starts with a typical TCP 

“hello” sequence and key exchange. Once the connection is 

setup, it is only taken down whenever the user stops using the 

VPN. The connection is one long TCP connection between 

the user’s machine and the VPN server. 

 

 
3.1    OpenVPN using Stunnel 
Stunnel3 is an open source, multiplatform application that is 

designed to add SSL/TLS encryption capability to clients and 

servers that do not natively support the SSL/TLS protocols. 

While OpenVPN itself has support for SSL/TLS, techniques 

such as Deep Packet Inspection (DPI) have the potential to 

detect OpenVPN when using SSL/TLs [47]. Stunnel can be 

used to overcome this and present the traffic to DPI 

frameworks as normal SSL web traffic running on port 443. 

This gave rise to the question of whether a similar method of 

classification that was used to classify OpenVPN traffic using 

a neural network could also be trained to recognize OpenVPN 

traffic that was using Stunnel. To use Stunnel, the user must 

install and configure the application on both the OpenVPN 

server and on whatever OpenVPN client they are using to 

connect to the VPN. On Linux this involves installing the 

application by downloading the stunnel4 package, creating 

and sharing a new OpenSSL certificate between the client and 

the server, creating and editing Stunnel config files and 

configuring the firewalls of both the server and client to allow 

the Stunnel traffic to be transported. 

 
3.2    Dataset 
As with the previous experiments, a dataset containing 

network traffic from Stunnel OpenVPN connections and non-

VPN traffic is required to train the neural network. With the 

ground work already done with the setup of the OpenVPN 

server on AWS for the previous experiment, this was 

relatively simple. The Streisand VPN package also contained 

everything necessary to setup Stunnel for use with OpenVPN, 

only requiring a few configuration files to be modified. Once 

the VPN was setup and the connection stable, capture of the 

network traffic began using the same method as used for the 

OpenVPN data capture. Wireshark was used to capture 

network packets; the VPN was set to disconnect and 

reconnect every 10 minutes and automatic browsing script 

was used to generate traffic from the same selection of 

websites. Once the packets were captured, they were 

processed using the TCP flow export tool NetMate in order 

to gain flow statistics of the new data. The result of this data 

capture was a total dataset of 3,952 samples, of which 1,931 

 
3 https://www.stunnel.org/ 

were Stunnel OpenVPN and 2,021 were non-VPN. This 

dataset was then loaded into Weka. 

 
3.3  Feature Selection 
Feature selection was applied to the capture data in order to 

reduce the number of features produced by NetMate. Again, 

the same Weka technique used for the OpenVPN experiment 

was used. This was the CorrelationAttributeEval model 

which was also operating under the same threshold of 0.5. 

The resulting features are displayed in Table 1. The feature 

selection for the Stunnel data appears to be largely different 

to the features selected for the original VPN dataset. Some 

attributes make a reappearance, such as duration, but with a 

different correlation coefficient. Some of the attributes 

selected this time have not been seen before which would 

seem to indicate that there is a difference in how Stunnel 

modifies the OpenVPN connection. 

 

Attribute Name Correlation Coefficient 

min_fpktl 0.992 

duration 0.937 

max_fpktl 0.913 

max_idle 0.78 

max_biat 0.763 

std_idle 0.719 

max_fiat 0.673 

mean_idle 0.575 

min_idle 0.562 

mean_fpktl 0.561 

mean_active 0.512 

max_active 0.511 

std_fpktl 0.506 

 

Table 1: Correlation Coefficients for Stunnel attributes 

 

Following the same steps used in the previous experiment, the 

dataset was resampled into separate training, testing and 

validation sets. The training set contains 3160 samples, the 

testing set contains 633 samples and the validation set 

contains 127 samples after resampling. 

 
3.4   Neural Network setup 
For this experiment the goal was to examine how well the 

model developed in the previous experiment could also 

perform the same with network traffic from a different source. 

Therefore, the neural network model used in the previous 

experiment was reused without any modification. Weka was 

instructed to create a fully connected network with a hidden 

layer which sums together the number of attributes with the 

number of classes and divide the result by 2. In this instance 

there are 13 attributes and 2 classes which results in 15 

divided by 2 which is 7.5. Weka rounds down to the nearest 

whole number so the number of hidden nodes is set to 7.   
 
Once at this stage, the model is ready to be trained using the 

dataset. In the previous experiment, the model was trained, 

tested and validated using three resampled sets of data. The 

same method was used for this model with additional tests 
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being run using 10-fold cross-validation and Leave One Out 

Cross Validation (LOOCV). On initial testing using these 

validation methods, the results gathered showed that the 

model was getting unrealistically high accuracy, possibly 

showing signs of overfitting of the model to the problem. To 

remedy this, the learning rate and then the momentum of the 

model were lowered from 0.1 to 0.01.  

 
3.5   Results 
Table 2, Table 3 and Table 4 show the results of each 

validation method used once the neural network had been 

finally trained using the updated configuration. Table 5, 

Table 6 and Table 7 show the confusion matrices for each of 

the tests. 

 

Correctly Classified Instances 98.4252% 

Incorrectly Classified Instances 1.5748% 

Average True Positive Rate 0.968 

Average False Positive Rate 0.000 

Average Precision 1.000 

Average Recall 0.968 

Average F-Measure 0.984 

 

Table 2: 80/20 split Validation test results 

 

Table 2 shows the results gathered from Weka for the test that 

used an 80/20 percentage split on the dataset to create 

separate training, testing and validation sets. The results 

shown are taken from the final validation set test, which uses 

data that was kept separate from the training and tuning of the 

model in order to simulate as close as possible the real-world 

performance of the model. The overall accuracy of the model 

was shown to be 98.42%. 

 

Correctly Classified Instances 97.8998% 

Incorrectly Classified Instances 2.1002% 

Average True Positive Rate 0.969 

Average False Positive Rate 0.012 

Average Precision 0.987 

Average Recall 0.969 

Average F-Measure 0.978 

 

Table 3: 10 fold Cross Validation test results 

 

Table 3 shows the results gathered from the test that used 10-

fold cross validation to validate the model. For validation of 

this model the dataset was split into 10 equally sized 

subsamples or folds. Of these 10 subsamples, one is retained 

as the validation data for testing of the model and the 

remaining 9 subsamples are used as training data. This 

process is then repeated 10 times so that each of the folds is 

exactly once as the validation data. These results are then 

averaged to provide a single estimation of the performance of 

the model. The overall accuracy as shown by this validation 

is shown to be 97.89%. 

 

Correctly Classified Instances 97.8239% 

Incorrectly Classified Instances 2.1761% 

Average True Positive Rate 0.968 

Average False Positive Rate 0.012 

Average Precision 0.987 

Average Recall 0.968 

Average F-Measure 0.978 

 

Table 4: Leave One Out CrossValidation test results 

 

Table 4 shows the results gathered from the test that used 

Leave One Out cross validation to validate the model. 

LOOCV involves a similar process to 10-fold Cross 

Validation where, instead of splitting the data into equal sized 

folds, only one sample is retained as the validation data, with 

the rest being used as training data. This process is repeated 

as many times as there are samples in the dataset i.e. until 

every single sample has been used as the validation data once. 

The overall accuracy achieved using this validation method 

was found to be 97.82%.  

 

Classified as  VPN Normal 

VPN 60 2 

Normal 0 65 

 

Table 5: Confusion Matrix for 80/20 split Validation test 

 

Table 5 shows the confusion matrix for the test that used an 

80/20 percentage split on the dataset. It shows 60 samples 

were correctly identified as VPN, 65 samples were correctly 

identified as non-VPN and 2 were incorrectly identified as 

non-VPN. Interesting is the lack of samples that were 

incorrectly identified as VPN.  

 

Classified as  VPN Normal 

VPN 1872 59 

Normal 24 1997 

 

Table 6: Confusion Matrix for 10 fold Cross Validation test 

 

Table 6 shows the confusion matrix for the test that used 10-

fold cross validation. It shows 1872 samples were correctly 

identified as VPN, 1997 samples were correctly identified as 

non-VPN, 24 samples were incorrectly identified as VPN and 

59 samples were incorrectly identified as non-VPN. 

 

Classified as  VPN Normal 

VPN 1870 61 

Normal 25 1996 

 

Table 7: Confusion Matrix for Leave One Out Cross 

Validation test 

Table 7 shows the confusion matrix for the test that used 

LOOCV for validating the model. It shows 1870 samples 

were correctly identified as VPN, 1996 samples were 

correctly identified as non-VPN, 25 samples were incorrectly 

identified as VPN and 61 samples were incorrectly identified 

as non-VPN. 

 



 

6 

 

 
Figure 1: Graph comparing accuracies of different validation 

techniques against ZeroRules 

 

The 80/20 split validation method was able to achieve an 

accuracy rate of 98.43%. Initially this would suggest that the 

80/20 training and test split provides the best model, because 

the overall number of samples in the validation set is 

comparatively low, the results may not be reliable. This 

leaves the two types of cross validation to be compared to 

each other. 10-fold cross validation is one of the more popular 

forms of cross validation and is widely used. LOOCV is 

essentially cross validation where the number of folds that the 

data is sub-divided into is the same as the total number of 

samples in the dataset, in this case that would be 3952 folds. 

In the results the overall accuracies of the two methods are 

very close to one another. However, LOOCV has a much 

higher computation time when compared to 10-fold cross 

validation despite the individual fold computation time being 

lower. When 10-fold validation is used the model only has to 

be trained and tested once for each of the 10 folds, the model 

in this case must be trained and tested 3952 times when using 

LOOCV. Because the results of the two validation techniques 

are so close to one another, this means the benefits of LOOCV 

are possibly worthless.  So, if we take the result of the 10-fold 

cross validation of 97.89% as the best indicator, it can be said 

that the neural network can accurately distinguish between an 

OpenVPN connection making use of Stunnel and normal 

non-VPN traffic. However, as noticed with the previous 

OpenVPN experiment, the confusion matrices for all of the 

validation methods used this time round show that the model 

is slightly too lenient, with a higher number of false negatives 

than false positives. Figure 1 shows the overall accuracies of 

each test to a test run without any rules applied. The 

ZeroRules method in Weka displays what the results would 

be in the event where everything is classified as one of the 

classes, in this case that was the normal class. Compared to 

the zero rules result, the neural network performs very well. 

 

 

4. Conclusion  
 

The aim was to investigate methods that would aid in the 

detection of VPN technologies that are being used to hide an 

attacker’s identity. While VPNs have legitimate uses, such as 

connecting to a business network from a remote location, they 

are still abused by criminals who use them to commit crimes 

whilst remaining undetected and unidentified. Without a 

method to identify when a VPN is connecting to a web facing 

server, businesses could be vulnerable to having their 

network breached and having data stolen whilst being 

hindered in their ability to confidently say who stole it. This 

can be particularly detrimental to websites who deal with 

customer details and financial records.  There are methods 

available for inspecting network traffic at the point of ingress 

and egress. An example of one of these methods is Deep 

Packet Inspection (DPI). It is closely related to another 

method called Shallow Packet Inspection (SPI), however SPI 

only has the ability to inspect the headers of network packets 

that are used to transport the packets to their destination. DPI 

goes a step further and inspects those headers and the actual 

content of the packet, which in the case of a HTTP packet 

could be a request for data from a website. A counter to DPI 

is the use of end-to-end encryption on the content of packets 

in order to hide those contents from prying eyes. This is done 

innocently enough with the goal being to stop potential man 

in the middle attacks from stealing sensitive data such as 

usernames and passwords or financial details as they are 

being transmitted. However, proxy and VPN technologies 

also have the ability to use encryption technologies with the 

use of IPSec and SSL/TLS. This increases the need for a 

method to identify these types of network traffic. Machine 

learning techniques are one way in which to accomplish this.  

 
The experiments conducted to classify OpenVPN usage 

found that the Neural Network was able to correctly identify 

the VPN traffic with an overall accuracy of 93.71%. The 

further work done to classify Stunnel OpenVPN usage found 

that the Neural Network was able to correctly identify VPN 

traffic with an overall accuracy of 97.82% accuracy when 

using 10-fold cross validation. This final experiment also 

provided an observation of 3 different validation techniques 

and the different accuracy results obtained. Upon successful 

experiments conducted for the detection of Anonymising 

Proxy traffic, the focus was extended to include VPN traffic. 

The VPN technology OpenVPN was chosen as the focus for 

the experiments, which in turn found that the Neural Network 

was capable of classifying network traffic as either VPN 

traffic or as non-VPN traffic. This led to a further set of 

experiments which attempted to classify a form of OpenVPN 

traffic that made use of Stunnel to provide encryption. These 

found that a Neural Network trained on the Stunnel 

OpenVPN data could classify network traffic as either VPN 

traffic or non-VPN traffic. Again, the experiments were 

conducted in such as fashion as to eliminate bias where 

possible. This included keeping a portion of the captured 

dataset away from the training and tuning phases, so it could 

be used to simulate real world data that the model had never 

seen before.  
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