

1

Detection of Virtual Private Network Traffic using Machine Learning

Shane Miller*, Kevin Curran and Tom Lunney

School of Computing, Engineering & Intelligent Systems, Ulster University, UK

*Corresponding Author email: miller-s1@ulster.ac.uk

Abstract: Detecting unauthorized users can be problematic for techniques that are available at present if the nefarious

actors are using identity hiding tools such as anonymising proxies or Virtual Private Networks (VPNs). This work

presents computational models to address the limitations currently experienced in detecting VPN traffic. A model to

detect usage of virtual private networks (VPNs) was developed with a Multi layered perceptron neural network that was

trained using flow statistics data found in the Transmission Control Protocol (TCP) header of captured network packets.

Validation testing showed that the presented models are capable of classifying network traffic in a binary manner as

direct (originating directly from a user’s own device) or indirect (makes use of identity and location hiding features of

VPNs) with high degrees of accuracy.

1. Introduction

Virtual Private Networks (VPNs) are a common method for

criminals and other bad actors to disguise their online

activities [1,2]. This is helped along by the increase in ease of

use of VPNs; they are no longer just a tool for remotely

accessing enterprise resources when travelling for work or

when working from home. In fact, this could be a use-case for

a criminal. If they wish to remotely access an enterprise

network in order to steal company and trade secrets, they can

use a VPN to hide their own location or to make it appear as

if someone else was infiltrating the network [3]. There have

been a few notable cases of this happening in recent years,

such as the Sony Pictures incident from 2014, where

confidential data including personal information about

employees was stolen [4, 5]. Other attacks of note are the

various data breaches which have been occurring for the last

number of years, such as the LinkedIn breach [6].

Approximately 167 million account details including emails

and passwords were stolen. It is not known whether the

attacker(s) were using a VPN service to hide their location.

There are many anonymity technologies with most being

based on networks called “mix” networks. These ‘Mix

networks’ route packets in such a way as to make it extremely

difficult a link between the source of the request. This works

via through intermediaries and ‘mixing’ packets from

participant. This makes it very difficult for eavesdroppers to

trace end-to-end communications [7, 8]. Low latency systems

include the popular anonymous communication system Tor

as well as HTTP/SOCKS proxy services and Virtual Private

Networks (VPNs) [9]. Systems such as Tor fall under the

category of multi-hop anonymous communications models,

while HTTP/SOCKS proxies and VPNs generally fall under

the category of single-hop anonymous communication

models. Proxy servers that are used to provide anonymisation

are based on another type of proxy known as an “open” proxy.

Open proxies are a proxy that is available to any user on the

Internet. They are mostly used to set up anonymous proxy

websites and categorised as a single-hop anonymous

communication model. There are several different

implementations of VPNs for providing anonymous

communications [10, 11, 12]. The intended use for VPN

implementations was to allow an organisation’s workers to

securely access internal network resources from outside of

the internal network i.e. remote access. This is achieved

through setting up a connection called a tunnel between the

user’s PC and the organisations servers. VPNs however can

also be used as an anonymous communication system in an

equivalent manner to an anonymous proxy server. The main

difference between the two methods is in the VPN’s tunnelled

connection. The tunnelled connection between the user and

the VPN server is encrypted.

IP blocking is a basic technique used to combat malicious

threats to networks and it is one of the most common

techniques for protecting networks [13]. Using this method,

an IP address or a range of IP addresses can be blocked from

accessing resources located on a web server or on an

organisation’s internal network. The IP block can be rendered

ineffective by using proxies or VPNs. The user’s IP address

is typically sent out as a source IP address in the network

packet containing the request to a web server. However, when

using a proxy or VPN, this request is first sent to the proxy

server which then forwards it on towards the web server. So,

the blocked IP address of the user is not actually making any

direct contact with the web server running the IP filter. The

offending proxy or VPN IP address can be blocked, but this

act of blocking the IP address can be made redundant. Upon

discovering that their preferred proxy IP has been blocked,

the user can simply switch to a different proxy or VPN

provider. Unless preventative action is taken, which will cost

a significant amount of time and effort, the user can continue

to switch in order to maintain their access. Another method

of securing networks is the use of Access Control Lists

(ACL). These are usually implemented alongside IP blocking

techniques. Network traffic is matched with an ACL to

discriminate which network packets are forwarded onwards.

Each packet is examined and compared to the policies

outlined in the ACL to determine whether it should be

allowed or blocked [14]. This is a very rigid form of network

security that relies on a lengthy setup. Specifying what is

acceptable and what is not takes a large amount of time due

to the complexity and sheer number of network protocols that

exist. Filtering based on the protocols included in the network

packets can be rendered ineffective by VPNs due to how they

encapsulate protocols within other protocols. Depending on

the exact implementation of ACL, the network topology for

the entire enterprise network will not be defined so the ACL

cannot determine what is a member of the network. Proxies

2

can easily take advantage of this and the ACL is also

susceptible to the user switching proxy provider to

circumvent any blocks. Software based packet inspection is

another method that can be used to detect and block usage of

a proxy or a VPN. Deep Packet Inspection (DPI) is a popular

method for securing networks against network packets

containing malicious items such as viruses and other malware

that are contained within payloads [15]. DPI examines and

manages network traffic as it enters the network in a form of

packet filtering that identifies, classifies and blocks packets

that contain data (such as the aforementioned viruses) within

their payload that goes against pre-arranged policies. This

examination occurs at checkpoints located around the

network and decisions based on rules assigned by an

organisation occur in real-time based on the contents of the

packet’s payload. Previously, packet scanning software had

the limitation of only scanning the packet’s header, which

contains the information necessary for transmission, but does

not contain anything related to its contents. By scanning the

packets contents, messages and other information can be

extracted and used to identify the specific application or

service it comes from. The rules that DPI algorithms operate

by were string based, however using regular expression

matching improves content scanning speeds [16]. As

powerful as DPI can be, it is defeated by packets that make

use of encryption to conceal their contents. VPNs are

particularly effective at bypassing DPI as well as some

proxies which support HTTPS, bringing the effectiveness of

DPI into question [17, 18, 19, 20]. Over the past decade the

research and networking communities have investigated and

developed several classification approaches based on

multiple algorithms. This has come about because the

traditional approach of using TCP and UDP network ports to

classify Internet applications has become less accurate.

Newer applications that are being developed do not have

ports registered to them by IANA and instead make use of

ports that are already registered to other applications. The

exhaustion of IP version 4 addresses has also contributed to

this as organisations and application developers move to

mitigate the effect [18]. Classification algorithms typically

require training based on previously labelled data. For

classification of network traffic, the network packets form the

basis of the dataset. The contents can consist of unedited

packet headers, with the information contained being used as

the training features. They can also consist of statistical

information calculated from streams of packets called flows.

Efforts to classify Internet applications have largely been

successful, with several datasets being created to represent

most of the applications available. However, datasets

representing anonymous communication systems are mostly

non-existent and research into classification of anonymous

traffic is still an emerging research area. A major limitation

into classification of this type of network traffic is the use of

encryption, which renders the payload of packets unusable as

a training feature. Using machine learning capabilities and

different feature formats, it should be possible to overcome

this limitation. Packet header information such as the

sequence and acknowledgement numbers and the general size

of the data can potentially be used to train a machine learning

algorithm. There is also the option of using flow-based

features to enhance the potential training and detection

accuracy of an algorithm [21].

The ability to detect whether a VPN has been used or not

could be helpful in the pursuit of attackers such as those just

mentioned. This research therefore presents methods that

would aid in the detection of VPN technologies that are being

used to hide an attacker’s identity. While VPNs have

legitimate uses, such as connecting to a business network

from a remote location, they are still abused by criminals who

use them to commit crimes whilst remaining undetected and

unidentified. We demonstrate the detection and classification

of VPN traffic using a Multi-layered Perceptron Neural

Network for the classification of the traffic. Our approach can

accurately identify threats in real time with as few false

positive and negative results as possible.

2. Virtual Private Networks (VPNs)

A Virtual Private Network (VPN) provides private networks

of resources and information over any public network [21,

22]. It enables a remote machine on network X to tunnel

traffic, that might not normally be able to be sent across the

Internet, to a gateway machine on network Y and appear to

be sitting, with an internal IP address, on network Y. The

gateway machine receives traffic to this internal IP address,

and sends it back to the remote machine on network X [23].

This itself does not provide much security. Intercepting these

tunnelled packets would still allow for the contents of the

private packets to be intercepted and exposed by a third party.

To overcome this, the private packets need to be encrypted

and above that, some form of authentication needs to be used.

VPN protocols vary in their support for encryption and

authentication schemes. Each of the following sections will

discuss some example algorithms and schemes supported by

each VPN protocol.

2.1 PPTP
The Point-to-Point Tunnelling Protocol (PPTP) is a link layer

VPN protocol that is designed to tunnel Point-to-Point

Protocol (PPP) connections through an IP network, creating

a VPN connection [10, 23]. The final packets are sent over IP

from the client to the gateway PPTP server and back again.

PPTP does not provide any methods for keeping data

confidential or for providing strong authentication. The

Microsoft implementation that was included with Windows

NT provides a framework for negotiating authentication and

encryption algorithms between server and client which relies

upon existing negotiations contained within extensions and

enhancements of PPP [25]. Some example authentication

algorithms are the Password Authentication Protocol (PAP),

the Challenge-Handshake Authentication Protocol (CHAP),

MS-CHAPv1/v2, Microsoft’s implementations of CHAP,

and Extensible Authentication Protocol (EAP). CHAP and

MS-CHAPv1/v2 have faced extensive scrutiny over the years

[22, 23, 26, 27]. PAP transmits the username and password

from the client through an unencrypted channel which leaves

it vulnerable to eavesdropping attacks. This leaves it in the

position where it can only be used as a last resort. Due to the

vulnerabilities that have been found in the authentication and

3

encryption algorithms it uses, PPTP does not see widespread

use anymore.

2.2 L2TP
The Layer 2 Tunnelling Protocol (L2TP) is also a link layer

VPN that extends the PPP model by combining features of

PPTP with features of the Layer 2 Forwarding (L2F) protocol

[28]. L2TP functions similarly to PPTP. Higher level

protocols, commonly PPP connections, are encapsulated

within an L2TP tunnel by setting up an L2TP session. The

L2TP packets in turn, including both the payload and the

L2TP header are transported within a UDP packet. L2TP is

also similar to PPTP in that it does not provide any methods

for confidentiality or authentication and instead inherits

existing protections from PPP. A protocol suite called IPsec

was introduced to provide improved authentication and

confidentiality over the PPP methods [12]. The original PPP

methods used by L2TP were found to be vulnerable to a

Denial of Service (Dos) attack which involved transmitting a

request to stop the connection using the correct identification

in order to terminate the VPN session [20]. This was a

vulnerability that was solved in an updated version of L2TP

called L2TP version 3 (L2TPv3). The new version included

an optional authentication and integrity check that nullified

the vulnerability. L2TP is often combined with another

authentication and encryption protocol suite called Internet

Protocol security (IPSec) [29].

2.3 IPsec
IPsec includes a collection of standardised protocols for

mutual authentication between two hosts at the beginning of

a VPN session and for the negotiation of cryptographic keys

used to enable encryption for the session [29]. Data is kept

secure by authenticating network packets to make sure of the

integrity of the packet and that encapsulation has been

implemented correctly. There are two modes in which IPsec

can provide this functionality: transport mode and tunnel

mode. In transport mode, the original packet is edited to

include a new IPsec header in the original IP header. This

additional header contains the information needed to perform

authentication and integrity checking. In comparison, tunnel

mode provides more flexibility. In tunnel mode, the entirety

of each original IP packet is encapsulated inside a new IP

packet consisting of a new IP header and the IPsec header

[29]. This adds a layer of abstraction from the original IP

packet’s contents therefore providing confidentiality for the

payload. To determine which mode is to be used during a

connection, security information defining the modes that each

end point supports needs to be exchanged. This is referred to

as a security association. It contains information on the mode

of IPsec to be used, the encryption algorithms to be used and

the encryption keys used to set up the encryption. Exchange

of this information is completed using the Internet Key

Exchange (IKE) protocol.

2.4 OpenVPN
OpenVPN1 [30] has a simple configuration and the mixture

of enterprise-level security, usability and other features, plus

1 https://openvpn.net/

its support for most of the operating systems that are

available, it is widely regarded as among the best VPN

solutions [31]. OpenVPN makes use of Hash-based message

authentication codes (HMAC) in combination with the SHA1

hashing algorithm for ensuring packet integrity. OpenVPN

has two authentication modes. In mode one, a pre-shared

static key is used to provide authentication and encryption. In

mode two, SSL/TLS mechanisms are used for authentication

and key exchange2 [31]. In static key mode, a pre-shared key

is shared between both hosts before the tunnel is set up. This

static key contains four independent sub-keys: HMAC send,

HMAC receive, encrypt and decrypt. The preferred mode of

operation is mode two which uses SSL/TLS. In this mode an

SSL session is established requiring both hosts to present

their own authentication certificate. If the authentication of

the hosts succeeds, negotiation and exchange of the

encryption/decryption and HMAC keys begins. Rather than

the keys being static as in mode 1, in mode 2 the keys are

randomly generated either by OpenSSL’s RAND_bytes

function or by using the TLS pseudorandom function (PRF)

alongside random source material from both hosts. The keys

are then exchanged over the SSL/TLS connection and the

tunnel forwarding process begins. The data to be encrypted

and transferred in the tunnel includes a 64-bit sequence

number and the payload data consisting of an IP packet or

Ethernet frame. Encryption of the tunnel packets is carried

out using the Blowfish secret key block cipher [32].

OpenVPN then multiplexes the SSL/TLS session that is used

for authentication and key exchange with the encrypted

tunnel data. SSL/TLS is designed to operate using a reliable

transport protocol so OpenVPN provides a reliable transport

layer on top of UDP. The actual IP packets are tunnelled over

UDP without an added reliability layer after they have been

authenticated with a HMAC as the IP packet forwarder has

been designed to operate over an unreliable transport layer.

3. VPN classification

A dataset consisting of TCP packets captured using the packet

analysis tool Wireshark from an OpenVPN connection was

created and tested using the exact same Azure machine

learning tools. The results for this showed that the network

was overfitting the problem as it was achieving 100%

classification accuracy for both VPN traffic and non-VPN

traffic. In external validation tests, the network was

essentially guessing, as it was classifying every sample as

having come from a VPN. In order to overcome this problem,

it was hypothesised that a new dataset consisting of TCP flow

records/statistics would be more appropriate for analysis.

Flow statistics provide a high-level view of network

communications by reporting the addresses, ports and byte

and packet counts contained in those communications [42].

This data can be especially valuable when network traffic is

being encrypted which can be the case with VPN traffic.

Wireshark formed the basis of the packet capture for this

newer dataset as was also the case for the first dataset. The

2 https://openvpn.net/index.php/open-source/documentation/security-
overview.html

4

computer system used to capture the traffic was an Ubuntu

16.04 based virtual machine running on a Windows 10 host.

The network connection used in the experiment is a

virtualised Intel PRO gigabit ethernet card. Linux was used

as it allows for a finer degree of control over some of the

internal systems included such as the networking stack. Using

some built in tools, it is easy to automate connections and

disconnections to different networks and different network

interfaces. This was a particularly helpful feature when

dealing with the capture of VPN based packets. In normal

operation, a connection to a VPN starts with a typical TCP

“hello” sequence and key exchange. Once the connection is

setup, it is only taken down whenever the user stops using the

VPN. The connection is one long TCP connection between

the user’s machine and the VPN server.

3.1 OpenVPN using Stunnel
Stunnel3 is an open source, multiplatform application that is

designed to add SSL/TLS encryption capability to clients and

servers that do not natively support the SSL/TLS protocols.

While OpenVPN itself has support for SSL/TLS, techniques

such as Deep Packet Inspection (DPI) have the potential to

detect OpenVPN when using SSL/TLs [47]. Stunnel can be

used to overcome this and present the traffic to DPI

frameworks as normal SSL web traffic running on port 443.

This gave rise to the question of whether a similar method of

classification that was used to classify OpenVPN traffic using

a neural network could also be trained to recognize OpenVPN

traffic that was using Stunnel. To use Stunnel, the user must

install and configure the application on both the OpenVPN

server and on whatever OpenVPN client they are using to

connect to the VPN. On Linux this involves installing the

application by downloading the stunnel4 package, creating

and sharing a new OpenSSL certificate between the client and

the server, creating and editing Stunnel config files and

configuring the firewalls of both the server and client to allow

the Stunnel traffic to be transported.

3.2 Dataset
As with the previous experiments, a dataset containing

network traffic from Stunnel OpenVPN connections and non-

VPN traffic is required to train the neural network. With the

ground work already done with the setup of the OpenVPN

server on AWS for the previous experiment, this was

relatively simple. The Streisand VPN package also contained

everything necessary to setup Stunnel for use with OpenVPN,

only requiring a few configuration files to be modified. Once

the VPN was setup and the connection stable, capture of the

network traffic began using the same method as used for the

OpenVPN data capture. Wireshark was used to capture

network packets; the VPN was set to disconnect and

reconnect every 10 minutes and automatic browsing script

was used to generate traffic from the same selection of

websites. Once the packets were captured, they were

processed using the TCP flow export tool NetMate in order

to gain flow statistics of the new data. The result of this data

capture was a total dataset of 3,952 samples, of which 1,931

3 https://www.stunnel.org/

were Stunnel OpenVPN and 2,021 were non-VPN. This

dataset was then loaded into Weka.

3.3 Feature Selection
Feature selection was applied to the capture data in order to

reduce the number of features produced by NetMate. Again,

the same Weka technique used for the OpenVPN experiment

was used. This was the CorrelationAttributeEval model

which was also operating under the same threshold of 0.5.

The resulting features are displayed in Table 1. The feature

selection for the Stunnel data appears to be largely different

to the features selected for the original VPN dataset. Some

attributes make a reappearance, such as duration, but with a

different correlation coefficient. Some of the attributes

selected this time have not been seen before which would

seem to indicate that there is a difference in how Stunnel

modifies the OpenVPN connection.

Attribute Name Correlation Coefficient

min_fpktl 0.992

duration 0.937

max_fpktl 0.913

max_idle 0.78

max_biat 0.763

std_idle 0.719

max_fiat 0.673

mean_idle 0.575

min_idle 0.562

mean_fpktl 0.561

mean_active 0.512

max_active 0.511

std_fpktl 0.506

Table 1: Correlation Coefficients for Stunnel attributes

Following the same steps used in the previous experiment, the

dataset was resampled into separate training, testing and

validation sets. The training set contains 3160 samples, the

testing set contains 633 samples and the validation set

contains 127 samples after resampling.

3.4 Neural Network setup
For this experiment the goal was to examine how well the

model developed in the previous experiment could also

perform the same with network traffic from a different source.

Therefore, the neural network model used in the previous

experiment was reused without any modification. Weka was

instructed to create a fully connected network with a hidden

layer which sums together the number of attributes with the

number of classes and divide the result by 2. In this instance

there are 13 attributes and 2 classes which results in 15

divided by 2 which is 7.5. Weka rounds down to the nearest

whole number so the number of hidden nodes is set to 7.

Once at this stage, the model is ready to be trained using the

dataset. In the previous experiment, the model was trained,

tested and validated using three resampled sets of data. The

same method was used for this model with additional tests

5

being run using 10-fold cross-validation and Leave One Out

Cross Validation (LOOCV). On initial testing using these

validation methods, the results gathered showed that the

model was getting unrealistically high accuracy, possibly

showing signs of overfitting of the model to the problem. To

remedy this, the learning rate and then the momentum of the

model were lowered from 0.1 to 0.01.

3.5 Results
Table 2, Table 3 and Table 4 show the results of each

validation method used once the neural network had been

finally trained using the updated configuration. Table 5,

Table 6 and Table 7 show the confusion matrices for each of

the tests.

Correctly Classified Instances 98.4252%

Incorrectly Classified Instances 1.5748%

Average True Positive Rate 0.968

Average False Positive Rate 0.000

Average Precision 1.000

Average Recall 0.968

Average F-Measure 0.984

Table 2: 80/20 split Validation test results

Table 2 shows the results gathered from Weka for the test that

used an 80/20 percentage split on the dataset to create

separate training, testing and validation sets. The results

shown are taken from the final validation set test, which uses

data that was kept separate from the training and tuning of the

model in order to simulate as close as possible the real-world

performance of the model. The overall accuracy of the model

was shown to be 98.42%.

Correctly Classified Instances 97.8998%

Incorrectly Classified Instances 2.1002%

Average True Positive Rate 0.969

Average False Positive Rate 0.012

Average Precision 0.987

Average Recall 0.969

Average F-Measure 0.978

Table 3: 10 fold Cross Validation test results

Table 3 shows the results gathered from the test that used 10-

fold cross validation to validate the model. For validation of

this model the dataset was split into 10 equally sized

subsamples or folds. Of these 10 subsamples, one is retained

as the validation data for testing of the model and the

remaining 9 subsamples are used as training data. This

process is then repeated 10 times so that each of the folds is

exactly once as the validation data. These results are then

averaged to provide a single estimation of the performance of

the model. The overall accuracy as shown by this validation

is shown to be 97.89%.

Correctly Classified Instances 97.8239%

Incorrectly Classified Instances 2.1761%

Average True Positive Rate 0.968

Average False Positive Rate 0.012

Average Precision 0.987

Average Recall 0.968

Average F-Measure 0.978

Table 4: Leave One Out CrossValidation test results

Table 4 shows the results gathered from the test that used

Leave One Out cross validation to validate the model.

LOOCV involves a similar process to 10-fold Cross

Validation where, instead of splitting the data into equal sized

folds, only one sample is retained as the validation data, with

the rest being used as training data. This process is repeated

as many times as there are samples in the dataset i.e. until

every single sample has been used as the validation data once.

The overall accuracy achieved using this validation method

was found to be 97.82%.

Classified as VPN Normal

VPN 60 2

Normal 0 65

Table 5: Confusion Matrix for 80/20 split Validation test

Table 5 shows the confusion matrix for the test that used an

80/20 percentage split on the dataset. It shows 60 samples

were correctly identified as VPN, 65 samples were correctly

identified as non-VPN and 2 were incorrectly identified as

non-VPN. Interesting is the lack of samples that were

incorrectly identified as VPN.

Classified as VPN Normal

VPN 1872 59

Normal 24 1997

Table 6: Confusion Matrix for 10 fold Cross Validation test

Table 6 shows the confusion matrix for the test that used 10-

fold cross validation. It shows 1872 samples were correctly

identified as VPN, 1997 samples were correctly identified as

non-VPN, 24 samples were incorrectly identified as VPN and

59 samples were incorrectly identified as non-VPN.

Classified as VPN Normal

VPN 1870 61

Normal 25 1996

Table 7: Confusion Matrix for Leave One Out Cross

Validation test

Table 7 shows the confusion matrix for the test that used

LOOCV for validating the model. It shows 1870 samples

were correctly identified as VPN, 1996 samples were

correctly identified as non-VPN, 25 samples were incorrectly

identified as VPN and 61 samples were incorrectly identified

as non-VPN.

6

Figure 1: Graph comparing accuracies of different validation

techniques against ZeroRules

The 80/20 split validation method was able to achieve an

accuracy rate of 98.43%. Initially this would suggest that the

80/20 training and test split provides the best model, because

the overall number of samples in the validation set is

comparatively low, the results may not be reliable. This

leaves the two types of cross validation to be compared to

each other. 10-fold cross validation is one of the more popular

forms of cross validation and is widely used. LOOCV is

essentially cross validation where the number of folds that the

data is sub-divided into is the same as the total number of

samples in the dataset, in this case that would be 3952 folds.

In the results the overall accuracies of the two methods are

very close to one another. However, LOOCV has a much

higher computation time when compared to 10-fold cross

validation despite the individual fold computation time being

lower. When 10-fold validation is used the model only has to

be trained and tested once for each of the 10 folds, the model

in this case must be trained and tested 3952 times when using

LOOCV. Because the results of the two validation techniques

are so close to one another, this means the benefits of LOOCV

are possibly worthless. So, if we take the result of the 10-fold

cross validation of 97.89% as the best indicator, it can be said

that the neural network can accurately distinguish between an

OpenVPN connection making use of Stunnel and normal

non-VPN traffic. However, as noticed with the previous

OpenVPN experiment, the confusion matrices for all of the

validation methods used this time round show that the model

is slightly too lenient, with a higher number of false negatives

than false positives. Figure 1 shows the overall accuracies of

each test to a test run without any rules applied. The

ZeroRules method in Weka displays what the results would

be in the event where everything is classified as one of the

classes, in this case that was the normal class. Compared to

the zero rules result, the neural network performs very well.

4. Conclusion

The aim was to investigate methods that would aid in the

detection of VPN technologies that are being used to hide an

attacker’s identity. While VPNs have legitimate uses, such as

connecting to a business network from a remote location, they

are still abused by criminals who use them to commit crimes

whilst remaining undetected and unidentified. Without a

method to identify when a VPN is connecting to a web facing

server, businesses could be vulnerable to having their

network breached and having data stolen whilst being

hindered in their ability to confidently say who stole it. This

can be particularly detrimental to websites who deal with

customer details and financial records. There are methods

available for inspecting network traffic at the point of ingress

and egress. An example of one of these methods is Deep

Packet Inspection (DPI). It is closely related to another

method called Shallow Packet Inspection (SPI), however SPI

only has the ability to inspect the headers of network packets

that are used to transport the packets to their destination. DPI

goes a step further and inspects those headers and the actual

content of the packet, which in the case of a HTTP packet

could be a request for data from a website. A counter to DPI

is the use of end-to-end encryption on the content of packets

in order to hide those contents from prying eyes. This is done

innocently enough with the goal being to stop potential man

in the middle attacks from stealing sensitive data such as

usernames and passwords or financial details as they are

being transmitted. However, proxy and VPN technologies

also have the ability to use encryption technologies with the

use of IPSec and SSL/TLS. This increases the need for a

method to identify these types of network traffic. Machine

learning techniques are one way in which to accomplish this.

The experiments conducted to classify OpenVPN usage

found that the Neural Network was able to correctly identify

the VPN traffic with an overall accuracy of 93.71%. The

further work done to classify Stunnel OpenVPN usage found

that the Neural Network was able to correctly identify VPN

traffic with an overall accuracy of 97.82% accuracy when

using 10-fold cross validation. This final experiment also

provided an observation of 3 different validation techniques

and the different accuracy results obtained. Upon successful

experiments conducted for the detection of Anonymising

Proxy traffic, the focus was extended to include VPN traffic.

The VPN technology OpenVPN was chosen as the focus for

the experiments, which in turn found that the Neural Network

was capable of classifying network traffic as either VPN

traffic or as non-VPN traffic. This led to a further set of

experiments which attempted to classify a form of OpenVPN

traffic that made use of Stunnel to provide encryption. These

found that a Neural Network trained on the Stunnel

OpenVPN data could classify network traffic as either VPN

traffic or non-VPN traffic. Again, the experiments were

conducted in such as fashion as to eliminate bias where

possible. This included keeping a portion of the captured

dataset away from the training and tuning phases, so it could

be used to simulate real world data that the model had never

seen before.

References

1. Miller, S., Curran, K., Lunney, T. (2018) Multilayer

Perceptron Neural Network for Detection of Encrypted VPN

Network Traffic IEEE International Conference on Cyber

Situational Awareness, Data Analytics and Assessment

(Cyber SA 2018), 11-12 June 2018, Scotland, UK

7

2. Miller, S., Curran, K. and Lunney, T. (2018) 'Detection of

Anonymising Proxies using Machine Learning', Special

issue on Machine Learning for Cyber Security in Journal of

Information Science (MDPI), ISSN 2078-2489, (Accepted)

2019

3. Geetha, S. and Phamila, A. V. (2016) Combating Security

Breaches and Criminal Activity in the Digital Sphere. First.

IGI Global. doi: 10.4018/978-1-5225-0193-0.

4. Peterson, A. (2014) ‘The Sony Pictures hack, explained.’,

Washington Post, 18 December. Available at:

https://www.washingtonpost.com/news/the-

switch/wp/2014/12/18/the-sony-pictures-hack-explained/.

5. Pagliery, J. (2014) What caused Sony hack: What we

know now, CNN. Available at:

http://money.cnn.com/2014/12/24/technology/security/sony-

hack-facts/ (Accessed: 6 December 2017).

6. Hunt, T. (2016) Observations and thoughts on the

LinkedIn data breach, troyhunt.com. Available at:

https://www.troyhunt.com/observations-and-thoughts-on-

the-linkedin-data-breach/ (Accessed: 6 December 2017).

7. Chaum, D. L. (1981) ‘Untraceable electronic mail, return

addresses, and digital pseudonyms’, Communications of the

ACM. ACM, 24(2), pp. 84–90. doi:

10.1145/358549.358563.

8. Yang, M. (2015) ‘De-anonymizing and countermeasures

in anonymous communication networks’, IEEE

Communications Magazine, 53(4), pp. 60–66. doi:

10.1109/MCOM.2015.7081076.

9. Wood, D.. (1988) ‘Virtual private networks’, in 1988

International Conference on Private Switching Systems and

Networks, New York, USA, pp. 132–136.

10. Zorn, G. (1999) ‘Point-to-Point Tunneling Protocol

(PPTP)’, RFC 2637, pp. 1–57. Available at:

https://tools.ietf.org/html/rfc2637 (Accessed: 12 January

2018).

11. Rawat, V. et al. (2001) Layer Two Tunneling Protocol

{(L2TP)} over Frame Relay. doi: 10.17487/RFC3070.

12. Lawas, J. B. R., Vivero, A. C. and Sharma, A. (2016)

‘Network performance evaluation of VPN protocols (SSTP

and IKEv2)’, in 2016 Thirteenth International Conference

on Wireless and Optical Communications Networks

(WOCN). IEEE, pp. 1–5. doi:

10.1109/WOCN.2016.7759880.

13. Thomas, K. et al. (2011) ‘Design and evaluation of a

real-time URL spam filtering service’, in Proceedings -

IEEE Symposium on Security and Privacy, pp. 447–462.

14. Cisco (2006) Access Control Lists: Overview and

Guidelines. Available at:

http://www.cisco.com/c/en/us/td/docs/ios/12_2/security/conf

iguration/guide/fsecur_c/scfacls.html.

15. Dharmapurikar, S. et al. (2003) ‘Deep packet inspection

using parallel Bloom filters’, IEEE Micro. IEEE Comput.

Soc, pp. 52–61. doi: 10.1109/CONECT.2003.1231477.

16. Yu, F., Chen, Z., Diao, Y., Lakshman, T., Katz, R.

(2006) ‘Fast and memory-efficient regular expression

matching for deep packet inspection’, 2006 Symposium on

Architecture For Networking And Communications

Systems. New York, New York, USA: ACM Press, pp. 1–

10. doi: 10.1145/1185347.1185360.

17. Sherry, J. et al. (2015) ‘BlindBox’, ACM SIGCOMM

Computer Communication Review. ACM, 45(5), pp. 213–

226. doi: 10.1145/2829988.2787502.

18. Dainotti, A., Pescape, A. and Claffy, K. (2012) ‘Issues

and future directions in traffic classification’, IEEE

Network, 26(1), pp. 35–40. doi:

10.1109/MNET.2012.6135854.

19. Miller, S., Curran, K. and Lunney, T. (2015) ‘Traffic

Classification for the Detection of Anonymous Web Proxy

Routing’, IJISR, 5(1), pp. 538–545. doi:

10.20533/ijisr.2042.4639.2015.0061.

20. Miller, S., Curran, K. and Lunney, T. (2016) ‘Cloud-

based machine learning for the detection of anonymous web

proxies’, in 2016 27th Irish Signals and Systems

Conference, ISSC 2016. IEEE, pp. 1–6. doi:

10.1109/ISSC.2016.7528443.

21. García-Teodoro, P. et al. (2009) ‘Anomaly-based

network intrusion detection: Techniques, systems and

challenges’, Computers & Security, 28(1), pp. 18–28. doi:

10.1016/j.cose.2008.08.003.

22. Hawkes-Robinson, W. (2002) ‘SANS Institute -

Microsoft PPTP VPN Vulnerabilities - Exploits in Action’.

SANS Institute. Available at:

https://www.researchgate.net/publication/235927650_SANS

Institute-_Microsoft_PPTP_VPN_Vulnerabilities_-

_Exploits_in_Action (Accessed: 19 January 2018).

23. Schneier, B. and Mudge (1998) ‘Cryptanalysis of

Microsoft’s point-to-point tunneling protocol (PPTP)’, 5th

ACM Conference on Computer and Communications

Security, pp. 132–141. doi: 10.1145/288090.288119.

24. Farinacci, D. et al. (1994) ‘Generic Routing

Encapsulation over IPv4 networks’, RFC1702, pp. 1–4.

Available at: https://tools.ietf.org/html/rfc1702 (Accessed:

17 January 2018).

25. Simpson, W. (1996) ‘PPP CHAP’. Network Working

Group. Available at: https://tools.ietf.org/rfc/rfc1994.txt

(Accessed: 19 January 2018).

8

26. Schmidt, J. (2012) A death blow for PPTP - The H

Security: News and Features. Available at: http://www.h-

online.com/security/features/A-death-blow-for-PPTP-

1716768.html (Accessed: 19 January 2018).

27. Microsoft (2012) Microsoft Security Advisory 2743314 |

Microsoft Docs, Microsoft Security Advisory. Available at:

https://docs.microsoft.com/en-us/security-

updates/SecurityAdvisories/2012/2743314 (Accessed: 12

January 2018).

28. Kazemi, K. and Fanian, A. (2015) ‘Tunneling protocols

identification using light packet inspection’, in 2015 12th

International Iranian Society of Cryptology Conference on

Information Security and Cryptology (ISCISC). IEEE, pp.

110–115. doi: 10.1109/ISCISC.2015.7387907.

29. Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/info/rfc4301>..

30. Feilner, M. (2006) Open VPN : building and operating

virtual private networks. Packt. Publishing, ISBN:

190481185X, 2006.

31. Pohl, F. and Schotten, H. D. (2017) ‘Secure and Scalable

Remote Access Tunnels for the IIoT: An Assessment of

openVPN and IPsec Performance’, in, pp. 83–90. doi:

10.1007/978-3-319-67262-5_7.

32. Schneier, B. (1994) ‘Description of a new variable-

length key, 64-bit block cipher (Blowfish)’, in. Springer,

Berlin, Heidelberg, pp. 191–204. doi: 10.1007/3-540-58108-

1_24.

33. Scarfone, K. and Mell, P. (2007) ‘Guide to intrusion

detection and prevention systems (idps)’, NIST special

publication, 800(2007), p. 94.

34. Lin, W.-C., Ke, S.-W. and Tsai, C.-F. (2015) ‘CANN:

An intrusion detection system based on combining cluster

centers and nearest neighbors’, Knowledge-Based Systems,

78, pp. 13–21. doi: 10.1016/j.knosys.2015.01.009.

35. Xiang, C., Yong, P. C. and Meng, L. S. (2008) ‘Design

of multiple-level hybrid classifier for intrusion detection

system using Bayesian clustering and decision trees’,

Pattern Recognition Letters, 29(7), pp. 918–924. doi:

10.1016/j.patrec.2008.01.008.

36. Khan, L., Awad, M. and Thuraisingham, B. (2006) ‘A

new intrusion detection system using support vector

machines and hierarchical clustering’, The VLDB Journal,

16(4), pp. 507–521. doi: 10.1007/s00778-006-0002-5.

37. Özyer, T., Alhajj, R. and Barker, K. (2007) ‘Intrusion

detection by integrating boosting genetic fuzzy classifier and

data mining criteria for rule pre-screening’, Journal of

Network and Computer Applications, 30(1), pp. 99–113.

doi: 10.1016/j.jnca.2005.06.002.

38. Ghosh, A. K., Schwartzbard, A. and Schatz, M. (1999)

‘Learning Program Behavior Profiles for Intrusion

Detection.’, in Workshop on Intrusion Detection and

Network Monitoring.

39. Samuel, A. L. (1959) ‘Some Studies in Machine

Learning Using the Game of Checkers’, IBM Journal of

Research and Development, 3(3), pp. 210–229. doi:

10.1147/rd.33.0210.

40. Khriplovich, I. B. and Pomeransky, A. A. (1998)

‘Equations of Motion of Spinning Relativistic Particle in

Electromagnetic and Gravitational Fields’, EUA: Prentice

Hall, 178, p. 640. doi: 10.1080/01422419908228843.

41. Russel, S. J. and Norvig, P. (2010) Artificial

intelligence: a modern approach. Third Edit, EUA: Prentice

Hall. Third Edit. doi: 10.1017/S0269888900007724.

42. Cisco (2018) Encrypted Traffic Analytics. Available at:

https://www.cisco.com/c/dam/en/us/solutions/collateral/ente

rprise-networks/enterprise-network-security/nb-09-encrytd-

traf-anlytcs-wp-cte-en.pdf (Accessed: 12 January 2018).

43. Liu, C., White, R. W. and Dumais, S. (2010)

‘Understanding web browsing behaviors through Weibull

analysis of dwell time’, in Proceeding of the 33rd

international ACM SIGIR conference on Research and

development in information retrieval - SIGIR ’10. New

York, New York, USA: ACM Press, p. 379. doi:

10.1145/1835449.1835513.

44. Arndt, D. (2011) NetMate-flowcalc. Available at:

https://dan.arndt.ca/projects/netmate-flowcalc/ (Accessed: 4

October 2018).

45. Stibler, S., Brownlee, N. and Ruth, G. (1999) ‘RTFM:

New Attributes for Traffic Flow Measurement’, pp. 1–18.

doi: 10.17487/RFC2724.

46. Frank, E., Hall, M. A. and Witten, I. H. (2016) ‘The

WEKA Workbench Online Appendix for “Data Mining:

Practical Machine Learning Tools and Techniques” Morgan

Kaufmann, Fourth Edition, 2016’, Morgan Kaufmann,

Fourth Edition. Available at:

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_

appendix.pdf (Accessed: 8 November 2017).

47. Deri, L., Martinelli, M., Cardigliano, A. (2014) ‘nDPI:

Open-source high-speed deep packet inspection’, in 2014

International Wireless Communications and Mobile

Computing Conference (IWCMC). IEEE, pp. 617–622. doi:

10.1109/IWCMC.2014.6906427.

